

Position Statement from National Highways

Title:	National Highways Update – Furnessing Methodolgy	
Reference:	TR050007	
Applicant:	Tritax Symmetry	
Proposal:	Application by Tritax Symmetry (Hinckley) Limited for	
	an Order Granting Development Consent for the	
	Hinckley National Rail Freight Interchange	
Author:	National Highways (20040073)	
Date:	09 January 2024	

National Highways ("we") has been appointed by the Secretary of State for Transport as strategic highway company under the provisions of the Infrastructure Act 2015 and is the highway authority, traffic authority and street authority for the Strategic Road Network (SRN). The SRN is a critical national asset and as such we work to ensure that it operates and is managed in the public interest, both in respect of current activities and needs as well as in providing effective stewardship of its long-term operation and integrity.

This note has been produced by National Highways, with the support of its consultants AECOM, as we have reviewed the furnessing methodology which was supplied by the applicants consultants, BWB Consulting, at deadline 3.

Based on this appraisal, we have a number of matters where further information and clarification are required. Our full review is provided in Annex 1 of this document, based on this the National Highways has identified the following matters need to be addressed, and therefore at this time we are unable to agree the furnessing methodology at present.

- 1. The Applicant has not responded to National Highway's comments as set out in the DCO document REP1-182.
- No junction turn matrices forecasts were produced in the "Furnessing Spreadsheet" at the M1 junction 20 two-bridge roundabout nor at the A5 'Redgate' elongated roundabout.

- The "Furness spreadsheet" does not document the grade separated flows at M69 junction 1 and at M69 junction 2. This means that the turning movement matrices cannot be used to assess the future operation efficiency of the M69 slip road merge areas.
- 4. The Furnessing process could underestimate the magnitude of the HGV turn movements between A5 North and A4303 East at the A5 'Cross In Hand' roundabout if new HGV trips are induced between the Applicant's Hinkley NRFI site and the existing Magna Park regional distribution centre.
- 5. Directional traffic growth biases in the target flows were noted at the A5 'Gibbet' roundabout. The operational performance of this roundabout should be assessed with alternative turning movement proportions applied to check that these biases are not material to the operational performance of the roundabout.

TR050007 Application by Tritax Symmetry (Hinckley) Limited for an Order Granting Development Consent for the Hinckley National Rail Freight Interchange

ANNEX A:

AECOM Review of Furnessing Methodology on behalf of National Highways

TR050007 Application by Tritax Symmetry (Hinckley) Limited for an Order Granting Development Consent for the Hinckley National Rail Freight Interchange

BLANK PAGE

Project: Hinckley NRFI	Author: David Elliott Associate Transport Planner, Technical Authority on Traffic Models
Subject: Review of Furnessing Spreadsheet (received 18 Dec 2023)	Reviewed:
Date: 8 th January 2024	Approved: Daniel Law

1. Introduction

National Highways provided a written response – dated 3rd October 2023 – to information submitted to the Hinkley NRFI Development Consent Order (DCO) examination. This written response was allocated the DCO library reference **REP1-182**.

The Applicant has proposed a method of forecasting the traffic flow turning movements for various scenarios – with and without the development and with and without mitigation – at the key junctions using a "Furness" method.

This method starts with a matrix of the observed turning movements at each junction and then modifies these matrices – using a process of successive matrix row and column factoring – such that the row totals and column totals match the forecast approach and exit flows extracted from a strategic traffic forecasting model. In this case the strategic traffic forecasting model was a version of the Pan-Regional Transport Model (PRTM) developed jointly for Leicestershire County Council and Lecester City Council and used forecasting years of 2026 and 2036.

The "Furnessing Methodology" was reviewed by National Highways and comments were recorded as set out in **Appendix B** of **REP1-182** (see PDF page 120 of 183 and the table on the subsequent pages 122 to 125). In this REP1-182 table, National Highways made some 'General Observation' (GO) comments and listed two items of 'Concern' (C). The concern comments are reproduced in Figure 1 below:

Figure 1

Issue		Planning Inspectorate Project Reference: TR050007 Environmental Statement Volume 2: Appendices Appendix 8.1: Transport Assessment (part 9 of 20) "Furness Methodology" Document Reference: 6.2.8.1, Revision: 07, Dated: September 2023 BWB document number: HNRFI-BWB-GEN-XX-RP-TR-0022-S4-P03_Furnessing Methodology BWB Reference: NTT2814. Revision 4, Status S4, Issue date: 04/09/2023	Applicant's Response/Action
3.3	(C)	The objective of the Furness process is to provide forecast turning flows at each junction of interest without and with the proposed Hinckley NRFI highway improvements in place. For the forecasts with the trips generated by the Hinckley NRFI highway improvements. i.e. Traffic forecast scenario (2026 & 2036) Assigned to highway network: Without (WO) Dev trips Future (committed schemes) A: Without (WO) Dev trips Future + NRFI improvements D: WO Dev + Infrastructure These three forecast flows sets (A, C, D) may be used to understand the environmental impacts of the Hinckley NRFI trips included in the forecasts. These three forecast flow sets will not identify if a junction or link to be improved is unnecessary. This might be a concern if: a) Environmental impacts are unnecessarily incurred. b) Carbon budget expended on unnecessary construction. c) Traffic charage construction delays existing users.	
4.5	(C)	For the junctions along the development's Spine Road, it is noted that forecast traffic flow matrices will be derived from the reassigned traffic attracted to the Spine Road – as forecasts by PRTMv2.2 – and combined with a 'first principals' method to distribute the trips generated by the proposed development. This method is considered to be a reasonable approach. This paragraph does not explain how the double counting of trips generated by the proposed development (i.e. generated in the PRTMv2.2 forecasts, which loads the trips at a single development zone, and trips added by the 'first principals' method) was addressed.	

The Summary of National Highway's comments given in **Appendix B** of **REP1-182** (see PDF page 126 of 183) are reproduced in Figure 2 below:

Figure 2:

Summary of National Highway's Comments:				
1.	The approach described is generally considered to be sound. The 'Furness' process is a common method used to adjust turning movement flows to match given target forecast flows entering and exiting a junction (i.e. doubly constrained adjustment).			
2.	A 'Furness' processed was applied to 'Prior' matrices that were derived from observed turning movements. However, this method of deriving Prior matrices is ineffective where the junctions would be substantially changed, specifically the two junctions at the north and the south accesses to the development site. The standard method of deriving 'Prior' matrices was adapted to instead derive 'Prior' matrices from the pan regional strategic traffic model's forecast outputs (PRTMv2.2) at these two junctions. This alteration to the agreed approach is reasonable.			
3.	Whilst the general approach to applying the Furness Process is acceptable, two areas of concern were identified:			
	 Where an observed (2018/19) turning movement is zero, or close to zero, the Furness Process will not reflect a reassignment of traffic into the corridor where this is indicated as an effect of the scheme by the forecasting scenario outputs from the PRTM v2.2 traffic forecast model. There is a risk of underestimating the demand for a turning movement at an assessed junction. 			
	 Where a large observed (2018/19) turning movement has had negative growth applied, due to reassignment effects in the PRTM v2.2 forecast outputs, then this could result in the suppression of a flow demand. This might be important to the junction's operational assessment if the suppressed flow demand is (say) a right turn. 			
4.	These two concerns may be addressed by undertaking a sense check using the PRTM reassignment impacts and turn movements; paying particular attention to the magnitude of flows that turn right at an assessed junction. Alternatively, the operational assessments of the junctions could include sensitivity testing of the derived turning proportions.			
5.	For those junctions along the Development's spine road, the report contains no description of how design reference flows were derived from PRTMv2.2 forecast outputs (which model loads all development trips at a single zone) combined with a 'first principals' method of distributing trips generated by the development. It is noted that the design of the spine road is not a specific concern for the Strategic Road Network (SRN), such as the M69, A5, M1 corridors.			
6.	There is no traffic forecasting set for the scenario 'With development generated trips' demand assigned to a 'Without HNFI infrastructure network'. This forecasting set would identify if all the link and junction improvements are necessary. This forecasting set would also assist in determining construction phase timing and sequencing of improvements.			

On 18th December 2023, an email from BWB Consulting to National Highways attached an Excel workbook containing a "Furnessing spreadsheet".

The next section 2 contains a summary of the contents of the "Furnessing spreadsheet" and the last section 3 contains National Highway's comments.

2. Summary of "Furnessing Spreadsheet" Contents

The supplied "Furnessing spreadsheet" contained 2026 and 2036 forecast year turning movements, for the AM and PM peak hours (in units of Vehicles/hour and PCU/hour), for light and heavy vehicle types.

The eleven junctions – in the bullet-point list below – were processed to produce forecast year turning movements and the turn matrices were tabulated in the "Furnessing spreadsheet".

- J1 Ashby Road (A447) / A47.
- J37 Hinckley Rd / New Rd / B581.
- J39 B4669 / Stanton Lane.
- J3 Coventry Rd (B4114) / B581 Broughton Rd.
- J13 M69 Junction 1 / A5.
- J14 A5 / B4666 / A47. (Dodwells Roundabout).
- J4 A5 / A47 The Long Shoot.
- J27 A5 / A4303 / B4027 / Coal Pit Ln. [J24].
- J15 M1 Junction 21 / M69 Junction 3 / A5460. [J6].
- J20 M69 Junction 2
- J26 Gibbet Roundabout (A5 / A426 / Rugby Rd)

Note: the 'J' numbers in the bullet-point list above correspond to the 'J' numbers used in the Transport Assessment [**APP-155**] as junctions identified for further assessment in its **Table 7-1**. Refer to extract at Figure 3 below. The junctions in the above bullet point list are highlighted yellow.

It is noted that some of the junction numbers used in the "Furness spreadsheet" are not consistent between sheets nor with Table 7-1. Care is needed when using the forecast turning movements tabulated in the "Furness spreadsheet" that the correct junction is being examined.

Figure 3: Table 7-1 Extracted From Applicant's Transport Assessment

Junction Type	JCT ID	Survey Jct Ref	Junction	Location
	J1	13	Ashby Rd / A47	Hinckley
	J2	15	A47 / B581	Earl Shilton
	J3	21	B4114 Coventry Rd / B581 Broughton Rd	East of Stoney Stanton
	J4	26	A47 / A5 (Longshoot)	Between Hinckley and Nuneator
	J5	27	Rugby Rd / Brookside	Hinckley
Signal	J6	50	Coventry Rd / Croft Rd	Croft
Controlled	J7	-	A563 / A5460	Leicester
	JS	65	A47 / Wilkinson Lane	Earl Shilton
	J9	66	A47 / B582 Desford Road	Between Hinckley and Leicester
	J10	-	Braunstone crossroads	Leicester
	J11	-	B581/Cosby Road, Broughton Astley	Broughton Astley
	J12	-	Rugby Road/Hawley Road, Hinckley	Hinckley
	J13	22	M69 Junction 1 / A5	South of Hinckley
	J14	25	A5 / B4666 / A47 (Dodswells)	SW of Hinckley
	J15	-	M1 Junction 21 / M69 Junction 3	Leicester
Signalised	J16	-	M6 Junction 2	Coventry
Roundabout	J17	-	Narborough Rd Roundabout	Leicester
	J18	-	M6 Junction 3	Coventry
	J19	-	B4114/Foxhunter roundabout	SW of Leicester
	J20	52	M69 Junction 2	Site access
	J21	14	A47 Leicester Rd / Clickers Way / Carrs Hill	Barwell
	J22	23	A5 / Logix Rd	South of Hinckley
	J23	24	A5 / Hammonds Way	South of Hinckley
	J24	29	The Common Barwell / A47 / B4668 Leicester Rd	Barwell
	J25	-	M1 Junction 20	Lutterworth
	J26	47	A5 / A426 / Gibbet Ln	South of Lutterworth
Roundabout	J27	48	A5 / A4303 / B4027 / Coal Pit Ln	Magna Park
	J28	-	Lubbesthorpe Way Roundabout	Leicester
	J29	-	A47 / A4254 Eastboro Way	Nuneaton
	J30	68	A5 / Higham Ln / Nuneaton Ln	West of Hinckley
	J31	-	A47/Leicester Road roundabout	North of Earl Shilton
	J32	•	A5/Royal Redgate	West of Hinckley
	J33	•	A5/A444 Fenny Drayton	West of Hinckley
	J34	-	A5/MIRA	West of Hinckley
	J35	•	A4303 Frank Whittle	Lutterworth
	J36	•	Shilton Road mini-roundabout, Barwell	South of Earl Shilton
Mini	J37	17	Hinckley Rd / New Rd / B581	Stoney Stanton
roundabout	J38	18	New Rd / Long St / Broughton Rd	Stoney Stanton

3. "Furnessing Spreadsheet" Contents – SRN Junctions

National Highways has been appointed by the Secretary of State for Transport as the strategic highway company under the provisions of the Infrastructure Act 2015 and is the highway authority, traffic authority and street authority for the Strategic Road Network (SRN), i.e. trunk roads. National Highway's role is to maintain the safe and efficient operation of the SRN whilst acting as a delivery partner to national economic growth.

The SRN routes within the area of interest include: M69, M1 and A5.

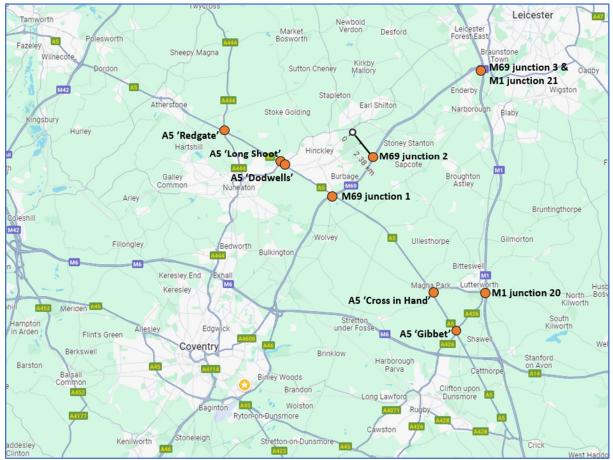
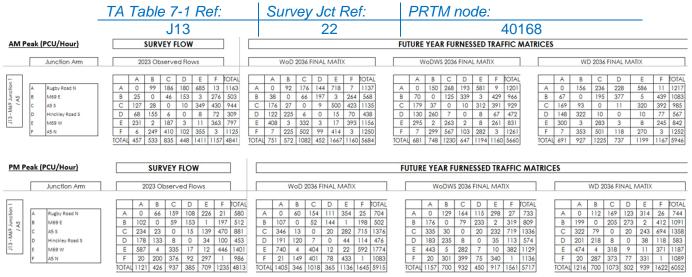


Figure 3: SRN Junctions In The Area Of Interest On: M69, M1, A5

The forecast tuning movements at nine of these junctions with connections to the SRN roads were examined in more detail. The locations of the nine junctions are labelled in Figure 3 above.

The following pages present extracts from the Applicant's "Furnessing spreadsheet" for the 2036 traffic forecasting year. Traffic flows and turning movements are presented in units of PCU/hour, where a PCU (passenger car unit) is equal to one car or half of a heavy goods vehicle. That is to say, in the subsequent capacity assessments, observed and modelled heavy goods vehicles (HGV) were assumed to occupy the capacity of two cars. Converting vehicles to PCU is a standard practice when modelling junction capacity.



In the following extracts from the "Furnessing spreadsheet":

- WoD means 'Without Development',
- WoDWS means 'Without Development / With the Applicant's highway Schemes', and
- WD means '<u>With D</u>evelopment' (including highway scheme improvements).

M69 junction 1 / A5 (Stretton Baskerville)

At M69 junction 1, the journeys between M69 East (arm B) and M69 West (arm E) are grade separated and therefore these trips bypass the roundabout and are not documented in the above turn matrices. This means that the above forecast turning movement matrices cannot be used to assess the future operation efficiency of the M69 slip road merge areas.

In the AM peak hour, the total 2023 flows observed to arrive at the junction were 4,841PCU/hour in the 2023 AM peak. Without Development (WoD) trips, in 2036 the total AM peak flows arriving at the junction would be 5,684PCU/hour (+17%). Most of this AM traffic growth is attributed to the SRN routes from A5 South (+20%) and from M69 West (+45%).

In the PM peak hour, the total 2023 flows observed to arrive at the junction were 4,813PCU/hour in the 2023 PM peak. Without Development (WoD) trips, in 2036 the total PM peak flows arriving at the junction would be 5,915PCU/hour (+23%). Most of this PM traffic growth is attributed to the SRN routes from A5 South (+56%) and from M69 West (+24%).

The effect of the proposed infrastructure improvements (WoDWS) would not materially change the levels of future year traffic flows but would change the directions of arrival – by reassignment – such that more flow arrives from the M69 East. This result appears logical given that the proposed highway infrastructure would provide a bypass to the east of Hinkley and redirect some existing journeys on the A47 via M69 junction 2.

The impact of the full development (WD) would be to increase 2036 forecast total inflows at M69 junction 1 by (5,946-5,684=) 262PCU/hour (+5%) in the AM peak and by (6,052-5,915=) 137PCU/hour (+2%) in the PM peak.

The outputs from the Furness process at M69 junction 1 are reasonable.

<u>M69 jur</u>	nction 2 / B4669:			
	TA Table 7-1 Ref:	Survey Jct Ref:	PRTM nodes:	
	J20	52	30504, 30197, 37	7003, 30196
AM Peak (PCU/Hour)	SURVEY FLOW		FUTURE YEAR FURNESSED TRAFFIC MATRIC	ES
Junction Arm	2023 Observed Flows	WoD 2036 FINAL MATIX	WoDWS 2036 FINAL MATIX	WD 2036 FINAL MATIX
C 4 4 M69 58 Off Slip 8 Hinckley R6 E C M69 N8 Off Slip D Hinckley R4 W E Site Access	A B C D E IOTAL A 0 29 0 134 0 163 B 161 2 0 324 0 487 C 0 0 0 0 0 0 0 D 433 258 0 2 0 673 E 0 0 0 0 0 0 IOTAL 594 289 0 460 0 1343	A B C D E TOTAL A 0 11 0 63 0 74 B 160 2 0 425 0 587 C 0 0 0 0 0 0 0 D 434 276 0 2 0 712 E 0 0 0 0 0 0 TOTAL 594 289 0 490 0 1373	A B C D E OTAL A 0 12 1 95 69 177 A B 87 0 588 156 180 1011 B B C 0 313 0 2 421 736 C C D 407 153 15 0 61 636 C C E 135 18 761 2 0 1016 E TOTAL 629 596 1365 255 731 3576 TOTAL	8 80 0 596 134 274 1084 2 0 295 0 1 900 1196 0 413 164 15 0 135 727
PM Peak (PCU/Hour)	SURVEY FLOW		FUTURE YEAR FURNESSED TRAFFIC MATRI	CES
Junction Arm	2023 Observed Flows	WoD 2036 FINAL MATIX	WoDWS 2036 FINAL MATIX	WD 2036 FINAL MATIX
C1 00 00 00 00 00 00 M69 N8 047 Sip 00 M60 N8 047 Sip 00 Site Access	A B C D E POTAL A 0 149 0 252 0 401 B 53 0 0 240 223 C 0 0 0 0 0 D 140 369 0 3 0 512 E 0 0 0 0 0 0 0 IOTAL 193 518 0 495 0 1206	A B C D E TOTAL A 0 144 0 183 0 327 B 36 0 248 0 304 C 0 0 0 0 0 0 D 77 439 0 3 0 519 E 0 0 0 0 0 0 0 TOTAL 113 583 0 454 0 1150	A B C D E TOTAL A 0 80 0 126 104 310 B 36 0 270 160 125 591 C 0 572 0 16 812 1400 D 119 184 2 0 142 447 E 47 97 364 7 0 515 TOTAL 202 933 636 309 1183 3263	A B C D E TOTAL A 0 73 0 117 257 447 B 210 296 147 71 535 C 0 575 0 16 1042 1633 D 110 157 1 0 147 415 E 335 209 925 22 0 1491 TOTAL 466 1014 1222 302 1517 4521

At M69 junction 2, the journeys between M69 Northeast (arm A) and M69 Southwest (arm C) are grade separated and therefore these trips bypass the roundabout and are not documented in the above turn matrices. This means that the above forecast turning movement matrices cannot be used to assess the future operation efficiency of the M69 slip road merge areas – which is likely to be a requirement in the WoDWS and WD cases given that the forecast flow to arm C is 1,365 & 1,644PCU/hour in the AM peak, and 636 & 1,222 PCU/hour in the PM peak. These forecasts traffic flow will use the proposed new southbound merge slip road.

In the AM peak hour, the total 2023 flows observed to arrive at the junction were 1,343PCU/hour in the 2023 AM peak. Without Development (WoD) trips, in 2036 the total AM peak flows arriving at the junction would be 1,373PCU/hour (+2%). This AM traffic growth is attributed westbound to the route from B4669 Hinkley Rd East (arm B) to B4669 Hinkley Rd West (arm D).

In the PM peak hour, the total 2023 flows observed to arrive at the junction were 1,206PCU/hour in the 2023 PM peak. Without Development (WoD) trips, in 2036 the total PM peak flows arriving at the junction would be 1,150PCU/hour (-5%). Most of this PM traffic reduction is attributed to the SRN routes from M69 Northeast (-18%).

The effect of the proposed infrastructure improvements (WoDWS) would change the levels of 2036 forecast traffic flows on the M69 junction 2 roundabout. The total inflows would increase from 1,373PCU/hour to 3,576PCU/hour in the AM peak hour. This is an increase of 2,203PCU/hour (+160%). In the PM peak hour, the total inflows would increase from 1,150PCU/hour to 3,263PCU/hour. This is an increase of 2,113PCU/hour (+184%). This result appears logical given that the proposed highway infrastructure would provide a bypass to the east of Hinkley and redirect some existing journeys on the A47 via M69 junction 2.

The impact of the full development (WD) would be to increase 2036 forecast total inflows at M69 junction 2 roundabout by (4,807-1,374=) 3,433PCU/hour (+250%%) in the AM peak and by (4,521-1,150=) 3,371PCU/hour (+290%) in the PM peak.

The Furness process applied to the M69 junction 2 observed 2023 turning movement flows has had very little effect. Most of the turn movement changes at the M69 junction 2 roundabout have been derived from absolute changes in the PRTM strategic transport model outputs for the forecasting scenarios tested.

<u>wi junc</u>	ction 21 / Wi69 Junctic	<u>cester):</u>	
	TA Table 7-1 Ref:	Survey Jct Ref:	PRTM nodes:
	J15	None	9463, 9495, 9447, 9439
AM Peak (PCU/Hour)	SURVEY FLOW	FU	UTURE YEAR FURNESSED TRAFFIC MATRICES
Junction Arm	2023 Observed Flows	WoD 2036 FINAL MATIX	WoDWS 2036 FINAL MATIX WD 2036 FINAL MATIX
uolpunt A M1 N M M M M M B A 4460 E C M M M B A 4460 E C M M M B M A M B M A M B A M B M A M B M A M B M A M B M A M B M A M M B M A M M B A M A M M B A A M M B A A M B A A M B A A A M B A	A B C D TOTAL A 6 649 1 1429 2085 8 1765 0 688 1118 3571 C 0 574 2 3 579 D 1523 1143 2 2 2670 TOTAL 3294 2366 693 2552 8905	A B C D TOTAL A 6 732 1 1555 2274 A B 1859 0 940 1403 4002 B C 0 444 2 3 449 C D 1470 1332 3 2 2807 D TOTAL 3335 2508 946 2963 9752 TOTAL	
PM Peak (PCU/Hour)	2023 Observed Flows	WoD 2036 FINAL MATIX	FUTURE YEAR FURNESSED TRAFFIC MATRICES
C C Log 2017 R M1 N B A5460 E C M15 D M69 M69	A B C D FOTAL A 23 1313 1371 2708 B 1699 0 643 1188 3530 C 0 432 0 11 443 D 1730 692 3 0 2425 TOTAL 3452 2437 647 2570 9106	A B C D FOTAL A 22 1344 1 1502 2869 B 1633 0 874 1416 3923 C 0 456 0 13 469 D 1648 753 4 0 2405 TOTAL 3303 2553 879 2931 9666	A B C D ToTAL A 2 1388 1 1512 2923 B 1706 0 888 1396 3990 C 0 466 0 13 479 D 1694 747 4 0 2445 TOTAL 3422 2601 893 2921 9837

M1 junction 21 / M69 Junction 3 (at Fosse Park, Leicester):

In the AM peak hour, the modelled total inflows arriving at the junction were 8,905PCU/hour in the 2023 AM peak. Without Development (WoD) trips, in 2036 the total AM peak flows arriving at the junction would be 9,752PCU/hour (+10%). This AM traffic growth is attributed between three approach roads (M1 North, M69 West and A5460 East).

In the PM peak hour, the modelled total inflows arriving at the junction were 9,106PCU/hour in the 2023 PM peak. Without Development (WoD) trips, in 2036 the total PM peak flows arriving at the junction would be 9,666PCU/hour (+6%). This PM traffic growth is attributed between two approach roads (M1 North and A5460 East).

The effect of the proposed infrastructure improvements (WoDWS) would not materially change the levels of future year traffic flows (No change in AM peak; +1.7% in PM peak). This result appears logical given that the proposed highway infrastructure would provide a bypass to the east of Hinkley and is unlikely to change the routing of the existing journeys at M1 junction 21.

The impact of the full development (WD) would be to change 2036 forecast total inflows at M69 junction 3/M1 junction 21 by (9,750-9,752=) -2PCU/hour (+0%) in the AM peak and by (9,897-9,666=) 231PCU/hour (+2%) in the PM peak.

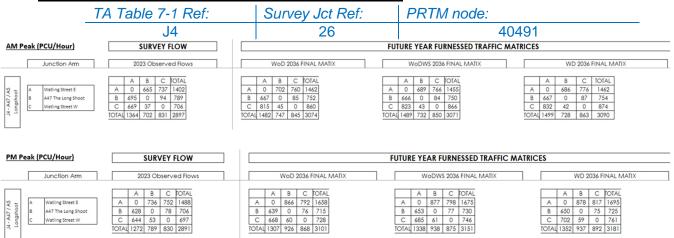
The outputs from the Furness process at M69 junction 3/M1 junction 21 are reasonable.

M1 junction 20 / A4303 (at Lutterworth)

TA Table 7-1 Ref:	Survey Jct Ref:
J25	None

No junction turn matrices forecasts were produced in the "Furnessing Spreadsheet" for the M1 junction 20 at Lutterworth.

Any additional trips generated for the full development (WD) forecast scenario at this M1 junction 20 roundabout would likely also pass through the A5 'Cross in Hand' junction. The magnitude of changes at the A5 junction should provide an indication of the changes forecast at M1 junction 20.


A5 / A444 'Redgate' elongated roundabout

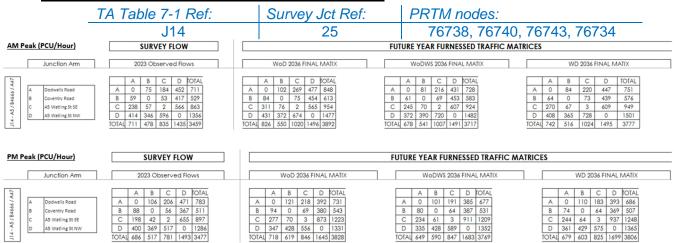
TA Table 7-1 Ref:	Survey Jct Ref:	
J32 & J33	None	

No junction turn matrices forecasts were produced in the "Furnessing Spreadsheet" for the A5 / A444 'Redgate' elongated roundabout.

Any additional trips generated for the full development (WD) forecast scenario at this A5 / A444 'Redgate' elongated roundabout would likely also pass through the A5 'Long Shoot' junction. The magnitude of changes at this easterly A5 junction should provide an indication of the changes forecast at this A5 / A444 'Redgate' junction.

A5 / A47 'The Long Shoot' signal-controlled junction

In the AM peak hour, the total 2023 flows observed to arrive at the junction were 2,897PCU/hour in the 2023 AM peak. Without Development (WoD) trips, in 2036 the total AM peak flows arriving at the junction would be 3,074PCU/hour (+6%). All of this AM traffic growth is attributed to the SRN route, A5 Watling Street East (arm A) and A5 Watling Street West (arm C). The two-way AM peak flows on A47 'The Long Shoot' would remain the same in 2036 as in 2023.



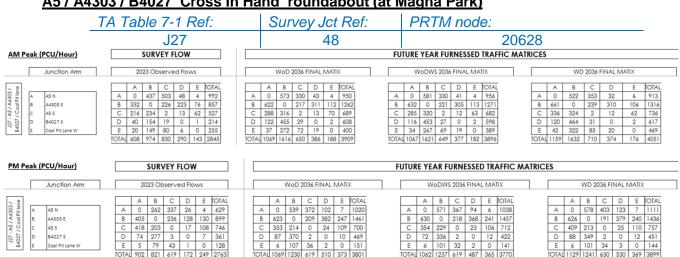
In the PM peak hour, the total 2023 flows observed to arrive at the junction were 2,891PCU/hour in the 2023 PM peak. Without Development (WoD) trips, in 2036 the total PM peak flows arriving at the junction would be 3,101PCU/hour (+7%). This PM traffic growth is attributed approximately equally to all three roads connected to the junction.

The effect of the proposed infrastructure improvements (WoDWS) would not materially change the levels of 2036 forecast year traffic flows at the A5 'Long Shoot' traffic signal-controlled junction (0% in the AM peak hour and +1.6% in the PM peak hour).

The impact of the full development (WD) forecast scenario does not change the level of the 2036 forecast peak hour flows at the A5 'Long Shoot' junction. This result implies that none of the trips generated by the proposed development would be to or from the local area around Nuneaton. This finding derives from the target flows generated by the PRTM strategic model's forecasting scenarios rather than from the Furness process.

A5 / A47 / B4666 'Dodwells' signalled roundabout

In the AM peak hour, the total 2023 flows observed to arrive at the junction were 3,459PCU/hour in the 2023 AM peak. Without Development (WoD) trips, in 2036 the total AM peak flows arriving at the junction would be 3,892PCU/hour (+13%). All of this AM traffic growth is attributed to the SRN route, A5 Watling Street Southeast (arm C) and A5 Watling Street Northwest (arm D). The two-way AM peak flows on the two minor roads (arm A and arm B) would remain the same in 2036 as in 2023.


In the PM peak hour, the total 2023 flows observed to arrive at the junction were 3,447PCU/hour in the 2023 PM peak. Without Development (WoD) trips, in 2036 the total PM peak flows arriving at the junction would be 3,828PCU/hour (+10%). This PM traffic growth is attributed to the SRN route, A5 Watling Street Southeast (arm C) and A5 Watling Street Northwest (arm D). The two-way PM peak flows on the two minor roads (arm A and arm B) would remain the same in 2036 as in 2023.

The effect of the proposed infrastructure improvements (WoDWS) would not materially change the levels of 2036 forecast year traffic inflows at the A5 'Dodwells' signalled roundabout (-4% in the AM peak hour and -2% in the PM peak hour). This is logical because the proposed highway infrastructure acts as an eastern bypass of Hinkley and would act to divert some longer-distance journeys away from A5 'Dodwells' junction and onto the M69.

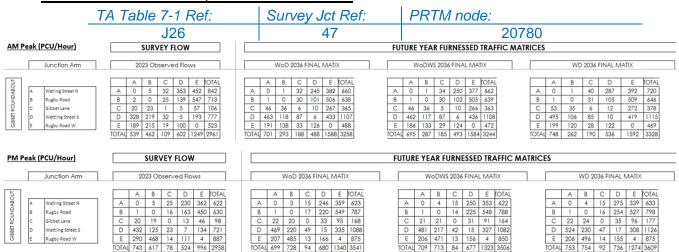
The impact of the full development (WD) forecast scenario does not change the level of the 2036 forecast peak hour inflows at the A5 'Dodwells' junction. This finding derives from the target flows generated by the PRTM strategic model's forecasting scenarios rather than from the Furness process.

A5 / A4303 / B4027 'Cross In Hand' roundabout (at Magna Park)

In the AM peak hour, the total 2023 flows observed to arrive at the junction were 2,845PCU/hour in the 2023 AM peak. Without Development (WoD) trips, in 2036 the total AM peak flows arriving at the junction would be 3,909PCU/hour (+38%). This AM traffic growth is attributed predominantly to the A4303 East (arm B), which provides access to the nearby Magna Park regional distribution warehouses.

In the PM peak hour, the total 2023 flows observed to arrive at the junction were 2,763PCU/hour in the 2023 PM peak. Without Development (WoD) trips, in 2036 the total PM peak flows arriving at the junction would be 3,801PCU/hour (+38%). This PM traffic growth is attributed predominantly to the A4303 East (arm B), which provides access to the nearby Magna Park regional distribution warehouses.

The effect of the proposed infrastructure improvements (WoDWS) would not materially change the levels of 2036 forecast year traffic inflows at the A5 'Cross In Hand' roundabout (-0% in the AM peak hour and -1% in the PM peak hour). This is logical because the proposed highway infrastructure acts as an eastern bypass of Hinkley and would not change existing journeys passing through the A5 'Cross in Hand' roundabout.


The impact of the full development (WD) forecast scenario does not materially increase the level of the 2036 forecast peak hour inflows at the A5 'Cross In Hand' junction (+4% AM peak hour inflows; +3% PM peak hour inflows).

This finding derives from the target flows generated by the PRTM strategic model's forecasting scenarios rather than from the Furness process.

It is noted that the PRTM could be modelling new freight trips between the existing Magna Park regional distribution centre and the Applicant's Hinkley NRFI site. If this was the case, then the Furness processing method would redistribute these large 2036 HGV turn movements between A5 North (arm A) and A4303 East (arm B) and in the WD scenario could underestimate the HGV flows between arm A and arm B.

A5 / A426 / Gibbet Lane, 'Gibbet' roundabout

In the AM peak hour, the total 2023 flows observed to arrive at the junction were 2,961PCU/hour in the 2023 AM peak. Without Development (WoD) trips, in 2036 the total AM peak flows arriving at the junction would be 3,258PCU/hour (+10%). This AM traffic growth is attributed predominantly to the traffic approaching from A5 Watling Street South arm D (+42%) and turning to A426 Rugby Road West arm E (+27%). This bias in directional traffic growth derives from the target flows obtained from the PRTM traffic forecasting scenarios.

In the PM peak hour, the total 2023 flows observed to arrive at the junction were 2,958PCU/hour in the 2023 PM peak. Without Development (WoD) trips, in 2036 the total PM peak flows arriving at the junction would be 3,541PCU/hour (+20%). This PM traffic growth is attributed predominantly to the traffic approaching from A5 Watling Street South arm D (+51%) and turning to A426 Rugby Road West arm E (+35%). This bias in directional traffic growth derives from the target flows obtained from the PRTM traffic forecasting scenarios.

The effect of the proposed infrastructure improvements (WoDWS) would not materially change the levels of 2036 forecast year traffic inflows at the A5 'Gibbet' roundabout (-0% in the AM peak hour and -1% in the PM peak hour). This is logical because the proposed highway infrastructure acts as an eastern bypass of Hinkley and would not change existing journeys passing through the A5 'Gibbet' roundabout.

The impact of the full development (WD) forecast scenario does not materially increase the level of the 2036 forecast peak hour inflows at the A5 'Gibbet' roundabout (+2% AM peak hour inflows; +2% PM peak hour inflows).

Because of the bias observed in the directional flows, the operational performance of the A5 'Gibbet' roundabout should be tested with a proportion of the left turn flows, from arm D (A5 Watling Street South) to arm E (A426 Southwest), transferred to an alternative exit arm.

4. Summary Of Comments

- 1. The Applicant has not responded to National Highway's comments as set out in the DCO document **REP1-182**.
- 2. No junction turn matrices forecasts were produced in the "Furnessing Spreadsheet" at the M1 junction 20 two-bridge roundabout nor at the A5 'Redgate' elongated roundabout.
- 3. The "Furness spreadsheet" does not document the grade separated flows at M69 junction 1 and at M69 junction 2. This means that the turning movement matrices cannot be used to assess the future operation efficiency of the M69 slip road merge areas.
- 4. The Furnessing process could underestimate the magnitude of the HGV turn movements between A5 North and A4303 East at the A5 'Cross In Hand' roundabout if new HGV trips are induced between the Applicant's Hinkley NRFI site and the existing Magna Park regional distribution centre.
- 5. Directional traffic growth biases in the target flows were noted at the A5 'Gibbet' roundabout. The operational performance of this roundabout should be assessed with alternative turning movement proportions applied to check that these biases are not material to the operational performance of the roundabout.